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The problem of calculating multicanonical parameters recursively is discussed. 
I describe in detail a computational implementation which has worked 
reasonably well in practice. 
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1. I N T R O D U C T I O N  

Recently multicanonical Monte  Carlo (MC) sampling and closely related 
methods have received much attentionJ 1-2') Considerable gains have been 
achieved in situations with "supercritical" slowing down, such as first-order 
transition tt'g'2~) (for a recent review see ref. 12) and systems with con- 
flicting constrains, for instance, spin glasses 12" 4, 17, 181 or proteins. 115" 16) In 
the multicanonical ensemble t~" 5) one samples configurations such that exact 
reconstruction of  canonical expectation values becomes feasible for a 
desired temperature range. This requires a broad energy distribution, and 
leaves innovative freedom concerning the optimal shape, t2~ Considerable 
practical experience exists only for the uniform energy distribution, where 
one samples such that: 

(a) The energy density is fiat in a desired range, 

P(E)  = const for Emin<~E<~Emax (1) 

(b) Each configuration of  fixed energy E appears with the same 
likelihood. 
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It should be noted that condition (b) is nontrivial. A simple algo- 
rithm (22) exists to achieve (a), but which gives up (b). Exact connection to 
the canonical ensemble is then lost. Such algorithms are interesting 
for hard optimization problems, but unsuitable for canonical statistical 
physics. The present paper focuses on achieving (a) and (b). 

A multicanonical investigation splits into two clearly distinct parts: 

(i) Determination of the weight factors. 

(ii) (Subsequent) Equilibrium simulations with fixed weight factors. 

Whereas the computational gains and physical achievements of the 
equilibrium simulations (ii) are normally well documented, papers tend to 
be fairly sketchy about part (i). The reason is that in a multicanonical 
simulation one has to calculate the weight factors only once per system 
size. However, performing something once inhibits statistical conclusions 
concerning the efficiency of the employed method (if it was systematic at 
all). This seems to be the main reason it has been impossible to compare 
actually used recursions quantitatively. Unfortunately, this renders the 
method difficult, if not obscure, to the newcomer. To achieve a flat energy 
distribution (10), the appropriate unnormalized weight factor w(E) is the 
inverse spectral density w ( E ) = n - J ( E ) .  Now (i) deals with the fact that 
the spectral density is a priori unknown. Otherwise we would have solved the 
problem in the first place. Presumably, reluctance about simulations with 
an a priori unknown weight factor is the main reason why earlier umbrella 
sampling (23) never became popular in statistical physics. It is the purpose 
of this paper to provide a first systematic and quantitative documentation 
for part (i) of multicanonical simulations. 

One has to distinguish two rather different situations. For first-order 
phase transitions the problem of the a priori unknown weight factor is rather 
elegantly overcome by means of finite-size scaling (FSS) methods.~l' s, 9. 11.12) 
A sufficiently accurate estimate is obtained by extrapolation from the 
already simulated smaller lattices. The smallest lattices still allow for 
efficient canonical simulations. 

For systems with conflicting constraints the situation is less satisfac- 
tory, because FSS does not work. For instance, for spin glasses one has to 
perform the additional average over quenched random variables (which are 
the exchange coupling constants). Different choices of these random 
variables define different realizations of the same system. For the Edward- 
Anderson Ising (EAI) spin glass it turned out (2' ~7) that even for identical 
lattice sizes, different realizations need different weight factors. Each system 
requires a new estimate of the weights factors with no a priori information 
available. The present paper documents a yet unpublished recursive method 
that has worked satisfactorily for more than 1500 different realizations of the 
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3D EAI model. C~7~ No claim is made that the method is in any sense 
optimal. Actually the author is considering various improvements. It is 
supposed to provide a reasonable starting point. 

The paper is organized as follows: In Section 2 generalized Ising 
models and related preliminaries are introduced. Mainly for pedagogical 
reasons, I focus on them for examples of this paper. It is clear that 
generalization to other systems is straightforward, although possibility 
tedious for continuous systems. In Section 3 I introduce the multicanonical 
method, and review recursions given in the literature/2" ~3~ No quantitative 
documentation of their performance is available. As their more efficient 
variants need considerable attention by "hand," it also seems impractical to 
rerun them sufficiently often now as needed to draw such conclusions. 
Section 4 describes the recursion which I invented for the simulations of 
ref. 17, and Section 5 illustrates its performance. Summary and conclusions 
follow. The appendix gives and explains a Fortran implementation. 

2. G E N E R A L I Z E D  IS lNG M O D E L S  

Let us consider a d-dimensional hypercubic lattice of volume 
V = N = L a with periodic boundary conditions. Spins s~ = +_ 1 are located at 
the N sites, and exchange interactions J~k = + 1 at the d N  links of the 
lattice. The energy of generalized Ising models is given by 

E = -  ~, Jiksisj (2) 
( ik)  

where the sum is over the nearest neighbor pairs. For Jik = 1 the standard 
Ising ferromagnet (IF) is recovered. When the J;k are quenched random 
variables, one obtains the EAI spin glass. I confine the subsequent discus- 
sion to these two situations. Let us further restrict the EAI spin glass to the 
situation _r<;k> Jik = 0. The partition function may be written as 

Z(fl) = ~ n(E) e-t~E (3) 
E 

where n(E) is the spectral density (24), more precisely the number of 
configurations (or states) with energy E. As the system has 2 N different 
states, this implie~ the normalization 

y' n(E) = 2 u (4) 
E 

The lowest possible energy is - d N ,  reached when each link contributes 
Jiksis k = 1. For the IF this is achieved with either all spins up ( + 1 ) or all 
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spins down ( - 1 ). The possible energy increments under the flip of a single 
spin are 

AE=O, + 4  ..... _+4d (5) 

Consequently n(E) may take nonzero values for 

E =  - d N ,  - d N  +4  ..... 0 ..... d N - 4 ,  dN (6) 

For instance, for d > l  the IF has n ( - d N ) = 2 ,  n ( - d N + 4 ) = O  ..... and 
n ( - d N +  4d)= N. For a typical EAI spin-glass configuration the ground- 
state energy Er, i, is considerably larger than - d N .  

3. M U L T I C A N O N I C A L  S A M P L I N G  

In the pedagogical review of ref. 5 I emphasized that the inverse spec- 
tral density is the appropriate weight factor to obtain a fiat energy density 

w(E) = n - l ( E )  = e-#(Ele+ =(e) (7) 

Here fl(E), ~(E) is the multicanonical parameterization. 11'2"261 The 
rationale of this notation is that fl(E) relates to the temperature, as will 
be shown. It should be noted that MC calculations are insensitive to an 
overall independent factor, i.e., against replacing w(E) by cw(E). In the 
following I will exploit this property from time to time, and not trace back 
the corresponding multiplicative or additive constants. If necessary, they 
may be obtained by introducing a convenient normalization. The spectral 
density may be written as 

n(E) = e s(E) (8) 

where S(E) is the microcanonical entropy. (-'4) The thermodynamic relation 
for the inverse temperature (fl = T - t ,  where my Boltzmann constant con- 
vention is k = 1) reads 

OS 
fl = ~--~ (9) 

For models with discrete energy values this may be translated into 

S(E + e) - S(E) 
fl( E) - (10) 

where e is the smallest possible energy increment such that n(E+e)  and 
n(E) are both nonzero. Typically we have e = 4 for the model of Section 2 
(special care is needed for the IF close to its ground state). Note that 
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Eq. (10) is in part convention. Other valid options would be ft(E)= 
[ S(E)  - S ( E -  e)]/e or ft(E) = [ S (E  + e) - S ( E -  e) ]/(2e). For consistency 
with refs. 2 and 5 I stay with (10). 

Once ft(E) is given, a(E) may be determined recursively. The equality 
of e -s~e) and e -p(e)e+~(e) implies 

S(E) -- S ( E -  e) = ft(E) E - -  f t (E--  e ) (E--  e) - o~(E) + ~(E--  e) 

Using (10) to eliminate the term e f t ( E - e ) ,  we find for ~(E) the recursion 
relation 

c t ( E - e ) = ~ ( E ) + [ f t ( E - e ) - f t ( E ) ] E ,  0C(Emax) = 0 (11) 

Here ~(E ... .  ) = 0 is a choice of the overall multiplicative constant needed 
to start off the recursion. 

To perform a multicanonical simulation, we do not need to know the 
exact weight factor (7). Instead, a working estimate ~(E) of w(E) is 
sufficient, such that the sampled energy histogram H(E)  is approximately 
fiat in the desired energy range (t). In the subsequent discussion I use the 
notation ~(E), S(E), fl(E), and 0Z(E) for estimators of the corresponding 
quantities n(E), S(E),  ft(E), and 0~(E). The technical feasibility of multi- 
canonical sampling depends on the existence of efficient methods to obtain 
an acceptable estimate ~(E). It seems that different workers in the field 
have tried various approaches. I am only familiar with two of them, as 
follows: 

(a) Methods which work in one or two steps. ~L 8. ~) Employing FSS, 
a reasonably good approximation ~(~)(E) is obtained by 
extrapolation from previously simulated, smaller lattices. With 
ff"(E) a first multicanonical simulation is carried out. Its results 
give an improved estimate ff(2)(E) with which additional simula- 
tions may be done. This approach works well for first-order 
phase transitions, but failed badly for some disordered systems. 

(b) Recursive calculations ~ " ( E ) ~  ~"+I(E) have been employed. 
They are subject of the following subsection. 

3.1. Recursive M u l t i c a n o n i c a l  Calcula t ions 

Let H ' ( E )  be the unnormalized histogram obtained from a (short) 
multicanonical simulation with r At energy values for which/-/~(E) is 
reliable, the new estimate is 

~'(E) (12) 
~"+ '(E) = H"(E)  
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Clearly Eq. (12) fails for energy values for which H " ( E ) =  0, and also values 
like/-/~(E) = 1 or 2 are of course statistically unreliable. Worse, situations 
can be encountered where even large values like H"(E)= 10 6 or more 
entries are all correlated. Let us assume that the starting point for the 
recursion is 

*i~~ = 1 (13) 

In general this is a reasonable choice, which will allow us to recover the 
normalization (4) when desired. For some applications other choices, like 
a canonical simulation at a certain temperature, may be more convenient. 

In the Berg and Celik ~ Eq. (12) was stated in the multicanonical 
notation (7). It reads then (note e = 4  in ref. 2) 

fi"+ 1(E)= fi"(E) + e  - l  ln[H"(E+e)/H"(E)] (14a) 

The function 0Z "+ ~(E) is then determined by Eq. (11). In addition to (14a), 
specific rules were given about how to exclude unreliable histogram entries. 
Namely, 

ffi"(E) for E >~ E~edian 
f i"+l(E)=l#n+ltE,  ' , (14b) 

~e ~ cutoff) for E <  E~uto ff 

Here E~edian is the median of the nth energy distribution, and E~u,orr< 
E~aedia n is an energy cutoff, such that in simulation n the temperature is 
kept constant for E < E~uto ft. Further, note that the starting condition (13) 
becomes fl~ E) -x-_ O, &~ E) =- O. 

Lee <13) states his recursion in two parts: 

S"+~(E)=,ff"(E)+lnH"(E) for H"(E) ~> 1 (15a) 

and 

S" + ~( E) = S"( E) for H"(E) = 0  (15b) 

The first part is obviously Eq. (12), as follows from tV'(E)= 
e x p [ - S " ( E ) ] .  The identity ~141 of (15a) and (14a) follows from (10). 
Obviously (15a) is an intermediate step to derive (14a). The second part 
(15b) is a specific prescription about how to handle H"(E)=0. The other 
unreliable H"(E) are included into the recursion (12). Let us note the 
following: 

(a) Aside from minor notational differences, both approaches handle 
the reliable part of the data identically. One should note that the equivalent 
equations (12), (14a), and (15a) are all nonlocal. The f l = 0  transition 
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probabilities w [ E ~ E ' ]  relate different energies. They form a (sparse) 
matrix whose eigenvector with eigenvalue one is finally supposed to 
become the spectral density, i.e., determines the weight factors. This 
diagonalization (implicitly carried out by the MC simulation) is a nonlocal 
process, and may induce certain instabilities. 

(b) As the recursions (12) and (15a) stand, the statistical accuracy of 
estimate n + 1 is entirely determined by MC simulation 17. With increasing 
n the covered energy range gets larger and larger. One needs longer and 
longer simulations just to regain the previously reached statistical accuracy 
(on the appropriate energy subrange). It is possible, but tedious, to com- 
bine the statistics of simulations 17, n - 1,..., 1, 0. 

(c) The median rule of (14b) freezes estimates on some part of the 
already covered energy range, but one should improve on it by using sub- 
sequent statistics when available. In ref. 2 it was suggested to combine the 
median rule with upper bounds on the energy, such that the energy range 
gets reasonably restricted. However, it is then difficult to ensure ergodicity. 

(d) A central difficulty of the recursions is the handling of energy 
regions for which reliabe statistical information is not yet available. 
I elaborate on this now. 

Lee's proposal (15b) looks attractive because of its simplicity. It works 
for the very small systems considered in his paper, but for many realistic 
situations it will lead to an unacceptable slowing down. The reason is that 
(15b) is equivalent to simulating with a constant weight factor (7). Now, 
at low temperatures one typically encounters 

n ( E -  e)/n(E) ~ V - I  (16) 

Therefore, for a not yet covered energy range E ~< Eo one will need of order 
V attempts just to achieve once the transition E0 --, E o -  e. 

The rule/~" + l = fl,, + ~(Ecutolr) for E < Ecutofr from (14b) achieves a far 
better performance for this situation. Assume that /~(E) is monotonically 
increasing toward lower energies (exceptions are first-order phase trans- 
itions). A canonical simulation with /~"+ ~(Ecutorr) will have its maximum 
energy density at E = Ecutorr, because its first derivative with respect to the 
energy is zero there. The width of its energy distribution is of order x//V, 
and by this amount the recursion is supposed to proceed forward toward 
lower energies. In practice one has to use estimators/~"+~(E). One would 
like to choose Ecutofr as  low as possible, but one encounters noise problem 
when the cutoff energy is shifted too far toward the edge of the reliably 
covered energy range. With some experience a good "pick" for Ecutorr can  
be achieved by just inspecting the function fi"+~(E). Alternatively, one 
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may use a fit fi~+,x ~ from several energy values instead of fl"+ '(Ecutorr), or 
even fit the continuation of the entire function fl" § l(E) for E < Ecutofr (with 
the penalty of spurious instabilities). In any case, in energy regions where 
(16) holds, one expects a performance increase by at least a volume factor 
over using (15b). On the other hand, it is precisely this part of the recur- 
sion (14) which requires annoying attention by hand. 

How the recursion (14) slows down with volume thus depends on the 
details of its implementation. Typically, one has to cover a macroscopic 
energy range, i.e., Ema x - - E m i  n ~ g. The optimal slowing down of a single 
multicanonical simulation on this range is ~ V-', corresponding to a 
random walk in the energy. (~) Of order V ~ simulations are needed to 
iterate from an initial canonical distribution up to covering the entire 
energy range multicanonically. This leads to an optimal slowing down 
~ V z5 for the recursion. 

4. A C C U M U L A T I V E  R E C U R S l O N  

I now introduce a recursion which calculates fi"+ I (E)  o n  the basis of 
the statistics accumulated in all previous runs n, n-1 , . . . ,  1. For this 
purpose let us first rewrite (14a) as 

fl"+ l(E)=e-~ ln[ H"(E + e)/H}( E) ] (17) 

where 

H~(E) = H"(E) exp[ - ifi"(E)e] (18) 

Equation (17) still holds when H"(E) and H~(E) are replaced by nonzero 
linear combinations H"(E) and H~(E): 

1~ = ~, W'(E) H'(E) (19a) 
m = O  

B~(E)= ~" W"'(E) H"p'(E) (19b) 
m = O  

The accumulated statistics can be presented by suitable choice of the 
weight factors W"(E). The optimal choice is not clear, as it may depend 
nontrivially on the dynamics. In practice 

min[ H"'(E + e), H"'(E) ] 
W"(E) = (20) 

max[H"'(E + e), H'(E)] 
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has worked well. It relies on the conservative assumption that each con- 
tribution to the estimate 

ri" + '(E) = e - '  In[ / )" (g  + e)/B~(E) ] (21) 

will be as good as its weakest part. This equation is supplemented by 

ri"+ I(E) = ri" + ' ( E +  e) (22) 

for the case that either ~ " ( E + e )  or ~r}(E) has insufficient statistics. To 
provide some feeling for the estimator (21), let me discuss two special cases. 

(a) When the desired, flat distribution is already reached, the weight 
factors (20) equal 1 up to statistical fluctuations. Let us ignore fluctua- 
tions for the moment. Then ~ " - I ( E  + e )=  je/,-~(E) holds before the n th 
run, which uses ri"(E) as defined by Eq. (21). In the nth recursion 
IT ' (E+e)=H"(E)  is obtained by assumption. This leads to /~/"(E+e)= 
~P-1(E + ) + IT'(E + e) and /~ (E)  = /~p- l (E)  +H"(E)exp(-ri"e) .  
Equations (19), (21) yield ri"+ ~(E)=/~"(E), i.e., the/~(E) function is a fixed 
point when the sampled distribution is flat. 

(b) Consider the first recursion, carried out with ri~ =- O. The sam- 
pling results will be H~ + e)/H~ = n(E + e)/n(E), again up to statistical 
fluctuations. Recursion (21) yields ril(E) = e- l  ln [n(E+ e)/n(E)], which 
is already the final multicanonical answer due to the fact that we have 
neglected statistical fluctuations. Quite generally it can be shown that the 
desired multicanonical function •(E) is an attractive fixed point of the 
recursion. 

In practice there may be severe statistical fluctuations due to only few, 
correlated entries in IT'(E+ e), IT'(E), or both. If the number of entries in 
both arrays is small, but approximately equal [ W " ( E ) ~ I ] ,  Eqs. (19) 
guarantee that increase from I T ' - ~ / - P  is in proportion the generated 
statistics (assuming similar autocorrelation times in runs n -  1, n -  2 .... ). If 
the number of entries is only small in either H"(E + e) or IT'(E), the weight 
factor (20) corrects for the asymmetry. The larger statistics is reduced to 
the smaller one, and the smaller is even more suppressed. As the ratio 
iff'(E+e)/IPI(E) determines the estimate ri"(E), it is clear that a large 
statistical fluctuation in either the numerator or the denominator is suf- 
ficient to destroy the entire estimate. The weight factor prevents this. 

In ref. 17 we did not supplement the present recursion by a median 
restriction of the type (14b), although this might lead to further improve- 
ments. Without such a restriction, typically the recursion leads quickly to 
rather high ri values, and Works its way back from the corresponding low- 
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energy values through the entire energy range. Occasionally this has led to 
"hang-up" situations, for which a simple "retreat" strategy has turned out 
to be sufficient. For the case of the generalized Ising model, the appendix 
gives and explains an actual program listing. A generalization of my recur- 
sion to nonflat distributions, for instance, those proposed in ref. 20, would 
be straightforward. 

5. N U M E R I C A L  TESTS 

Results for the 3d IF and the 3d EAI spin glass are reported. To 
measure the performance quantitatively, I use the "tunneling time" as 
defined in refs 1 and 2. This is the average computer time r, measured in 
updates, which it takes to proceed from Emi, to Em,x and back. For 
instance, in the IF the degenerate ground states characterized by all spins 
ups and all spins down are separated by a large free energy barrier. In 
canonical simulations a tunneling process may lead from the up to the 
down state or vice versa. Therefore the notion "tunneling time." But it 
should be noted that the multicanonical method overcomes free energy 
barriers actually not through a tunneling process, but by moving along 
valleys, which are connected to the disordered phase. 

To keep the relation to the program listing in the appendix close, 
I shall use 

I A = � 8 8  with N = L  a (23) 

instead of the energy defined by (2). The rationale of IA is its range: 

I,~ =0 ,  1, 2 ..... dN/2 (24) 

in typical increments of 1. For comparison, we had - d N < ~  E <~ dN in 
typical increments of 4. Consequently, for the purposes of programing IA 
is far more convenient. Functions of E are now interpreted as functions of 
IA in the obvious way, i.e., fl[E(I~)] ~fl(IA),  and so on. 

5.1. Three-Dimensional  Ising Ferromagnet 

The first few terms of the low-temperature expansion on a finite (but 
sufficiently large) lattice are collected in Table I. The present computer 
program is unsuitable to cope with n ( IA)=0  for IA=(3N/2 ) - - l ,  
( 3 N / 2 ) - 2 ,  and ( 3 N / 2 ) - 4 .  I just bypass 3 the problem by restricting the 
updating to the range IA ~ N~,x -- (3N/2) - 5. Proposals with IA > Nm,x are 
simply rejected. 

3 It is straightforward but tedious to modify the subroutine UPHUCA of the appendix such that 
it can cope with n(IA) for (isolated) IA values. 
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Table I. Finite-Lattice Low Temperature Expansion 
for the 3D IF ( N = L  a) 

E la n(IA) 

--3N 3N/2 2 
- 3 N + 4  ( 3 N / 2 ) -  1 0 
- 3 N + 8  ( 3 N / 2 ) - 2  0 
- - 3 N +  12 (3N/2) - 3 2N 
- 3 N +  16 ( 3 N / 2 ) - 4  0 
- - 3 N + 2 0  ( 3 N / 2 ) -  5 6N 
- 3 N + 2 4  ( 3 N / 2 ) -  6 2 N 2 -  14N 
- 3 N + 2 8  ( 3 N / 2 ) - 7  30N 
- 3 N + 3 2  (3N/2)- -8  6 N 2 - 6 6 N  
- 3 N +  36 (3N/2) - 9  (2N 3 - 4 2 N  2 + 1252N)/6 
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We want to calculate multicanonical parameters for the temperature 
range infinity down to zero. Simulations with fl = 0 are peaked around 
IA = Nmi,, = 3N/4.  We therefore fix the function fl to f l(IA) = 0 for I A ~< Nmi n . 

For I A > Nmi n we perform the multicanonical recursion of Section 4. The 
covered range of lattices was 4 ~< L ~< 16. In a first set of runs the recursion 
was applied until the system tunneled at least 60 times. The (expected) 
experience from these runs is that the recursion remained stable after the 
first tunneling. The tunneling time f is then measured after the first 
tunneling has occured, while continuing to update the parameters. Table II 
collects the measured tunneling times f, and states on how many tunneling 
events n, the estimates rely. 

By ro I denote the time (as always in updates) it takes until the first 
tunneling has taken place. This is essentially the time our recursion needs 
to provide a reliable estimate of the multicanonical parameters, and it will 
therefore be called the recursion time. Two estimates, fg and fo b are given 
in Table II. They differ by the number of sweeps performed before the 
multicanonical parameters are updated (i.e., the subroutine UPMUCA of the 

Table II. Tunneling and Recursion Times for the 3D IF 

-a  ilr~ -b n r  I "~1 L n, f n,-~ r o r o 

4 548 719 (19) E01 126 661 (41)E02 126 557 (46) E02 111 731158) E01 
6 354 126 (05) E03 252 195 (20) E04 126 219 (23) E04 145 129 (10) E03 
8 559 881 (23) E03 126 311 (55) E05 126 253 (50) E05 125 839 (69) E03 

12 322 118 (06) E05 140 95 (32) E07 164 90 (15) E07 141 127(11) E05 
16 577 760 (30) E05 180 2 14(big)E09 180 746 (54) E05 
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appendix is called). A sweep is defined by updating N =  L d spins. For  f~), 
U P M U C A  was called every 120 sweeps, whereas for fb o, it was called every 
N sweeps. Within the (still large) statistical errors there is no noticeable 
difference. 

The values nT~ and nr~ are the numbers of  f l ( I A ) -  0 restarts on which 
the respective estimates rely. As the average time needed per recursion is 
substantially higher than the average tunneling time T, I have limited the 
To analysis to L ~< 12. The given error bars are somewhat unreliable, as the 
obtained distributions have long tails toward large To values. Figure 1 
employs a logscale for To to show the histograms for r0 b. The distributions 
for the tunneling times T themselves are more reasonably (Poisson-like) 
behaved. 

Figure 2 shows the increase of T and To b with volume on a log-scale. 
The straight lines correspond to the fits r = c V ~ and to rob-- co V ~~ The 
results for the fit parameters are 

In ( c )=  -0.53+_0.16,  6=2.249_+0.021 ( Q = 0 . 1 8 )  (25) 

Histograms for Recursion Times 
40 

35 

30 

25 

Histo- 20 
grams 
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10 

L - - 1 2  - -  
L = 8  - -  
L = 6  - -  
L = 4  - -  

0 ~ 
1000 I0000 100000 le+06 le+07 le+08 le+09 le+lO 

Fig. 1. Histograms for the 3D IF recursion time ~ on lattices of size L ~. 

le+ll 
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Recursion and Tunneling Times 
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Estimates for the recursion time "~b 0 and the tunneling time -? for the 3D IF. 

and 

In(co) = - 1.24 Jr 0.17, 60 -- 2.931 4- 0.023 (Q = 0.70) (26) 

where Q is the goodness of fit (27). It should be remembered that the lower 
bounds are 6 = 2  (see ref. 1) and 60=2.5 (see Section 3). 

To demonstrate that after a few tunneling events the multicanonical 
parameters are indeed already useful, I have also measured a tunneling 
time z~ obtained by fixing the multicanonical parameters after the first four 
tunneling events. Table II contains also the corresponding estimates f~. 
Within the statistilzal errors, there is no difference with the estimates f. 

5.2. Three-Dimensional Edwards-Anderson Ising Spin Glass 

First I present some results from ref. 17 which are not contained in 
this reference. For fixed lattice size L, tunneling times T are found to vary 
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greatly for different Jik realizations. For each lattice size, Fig. 3 connects 
the tunneling times, sorted in decreasing order. For L = 4--8 there are 512 
different realizations per lattice. For L =  12 there are only seven realiza- 
tions, depicted at 6 4 ( i -  1), i =  1 ..... 7. The lines are drawn to guide the eye. 
Figure 4 depicts histograms for the L = 4-8 tunneling times. In both figures 
a logarithmic scale is used for r. The worst realization have dramatically 
larger tunneling times than typical ones, defined by the median value to.5. 
This leads to large differences between the mean value f, which determines 
the needed computer time, and the median value go.5. These values are col- 
lected in Table III. With increasing lattice size the discrepancy between mean 
and median increases dramatically (the L = 12 data have to be considered 
unreliable for this purpose). This lack of self-averaging of the spin glass with 
respect to the multicanonical tunneling time is somewhat surprising, and 
needs to be better understood. Also collected in the table are the smallest 
%.0 and largest r ~.o tunneling times found on the investigated realizations. 

For L ~< 8 typical spin-glass realizations, i.e., the realizations corre- 
sponding to the median ro.5 tunneling times of Table III,  I have performed 

l e + l l  
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the same analysis as for the 3d IF in the previous subsection. The results 
are collected in Table IV. An interesting and unexpected result is that I find 
TI systematically smaller than f, i.e., further applications of the recursion 
relation make the tunneling worse. My tentative interpretation is that the 
flat distribution is not optimal. Due to statistical fluctuations, one can then 

Table III. Mean ~ and Some q-Tiles ~q for 
the 3D EAI Tunneling Time 

L f fo.o f0.5 fl.0 

4 398(15)E02 144E02 304E02 411E03 
6 336 (30) E04 436E03 131 E04 670E05 
8 171 (46) E06 505 E04 282 E05 213 E08 

12 139 (77) E08 408 E06 481 E07 544E08 
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Table IV. Tunneling and Recursion Times for Typical 3D EAI Spin-Glass 
Realizations 

L n, f n,; fg n,~ eg n,, fl 

4 185 332 (25) E02 126 523 (19) E02 126 409 (22) E02 270 228 (14) E02 
6 256 181(12) E04 126 150(10) E04 126 172(11)E04 357 131(08) E04 
8 134 272 (26) E05 252 245 (13)E05 252 253 (16) E05 207 203 (16) E05 

imagine that immediately after one of  the first few tunneling events the 
generated multicanonical parameters are positively correlated toward a 
more optimal choice. As for the IF, the recursion times fg and fo b are 
practically identical. However, a second unexpected result is that  now the 
recursion times take the same order of  magnitude as the tunneling times. 

Runs were also performed on an L = 12 realization, but they did not  
allow statistically reliable conclusions. A lesson to be learned from these 
runs is that it is advantageous to perform several independent starts when 
applying the recursion to systems on the edge of  what  can be done. 

The subsequent results are obtained from straight-line fits to the 
equations z = cV  "~, z I : C 1V 61, and r~ = Co Va~ 

In(c) = - 3 . 0 4  ___ 0.29, 

ln(cl ) = - 3.61 -+ 0.24, 

6 = 3.24 _ 0.06 (Q = 0.40) (27a) 

61 = 3.28 _ 0.05 ( Q = 0.39) (27b) 

and 

In(co) = - 2 . 2 3  + 0.24, 6o = 3.09 _+ 0.04 (Q = 0.78) (28) 

Here, as well as in the previous section, the routine G F I T  from ref. 27 gives 
results perfectly compatible with the linear-fit results. A figure corre- 
sponding to (27) and (28) looks similar to Fig. 2, but is not  very instruc- 
tive, as all three fits lines are almost on top of one another. The exponent 
6 is smaller than the one reported in ref. 17. The reason is that it is defined 
differently. In ref. 17 the tunneling time was averaged over all realization, 
whereas here I have picked single, typical realizations. There is evidence 
that for the worst realizations, the tunneling time slows down exponentially 
with L. 

6. S U M M A R Y  A N D  C O N C L U S I O N S  

For  the 3D Ising ferromagnet it is clear that  the FSS methods 
employed in refs. 1 and 8 provide reliable estimates of  the multicanonical 
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parameters more efficiently than the recursion of this paper. On the other 
hand, the FSS approach breaks down c2~ for the important class of disor- 
dered systems. Then recursions like the one of this paper become crucial, 
and the Ising ferromagnet is still a suitable testing ground to set quan- 
titative performance scales. These are now given, for the first time, by 
Tables III and IV. Table IV corresponds to the important case of a typical 
Edwards-Anderson Ising spin glass. Future investigations will have to cope 
with these standards. It is my hope that they will bring improvements in 
the constant factor, and possibly toward a V ~ power-law behavior, which 
is optimal for any kind of local random walk behavior. 

APPENDIX 

In this appendix I describe the actually used computer implementation 
for the accumulative recursion of the multicanonical parameters. The 
relevant Fortran subroutine is listed as Table V. Parameters (to be set) are 
the dimension ND and the lattice size NL. 

The argument IRPT keeps track of the number of repeated calls to 
UPMUCA. In an outside DO-loop IRPT runs from I to NRPT. Inside our 
subroutine NRPT is only needed to dimension the LOGICAL array LRTRT, 

which keeps track of the number of "retreats". A parameter not needed at 
all in our subroutine is NSW. It denotes the number of update sweeps per- 
formed in between the calls to UPMUCA. NAMIN sets the lower bound on 
the IA range (1A of Section 5) to which the recursion is applied. 

Most arguments are passed through COMMON blocks. On entry the 
array HA contains the newly assembled statistics, i.e., the histogram of the 
number of times a certain IA value has been visited during the last NSW 
sweeps. (The information is collected after each single spin update.) 
Further arguments passed by the COMMON block MEAH (measurements) 
are: IAMIN, the smallest IA value encountered so far (not used in 
UPMUCA); IAMAX, the largest IA value encountered so far; ITMIN, the 
smallest IA value encountered during the last NSW sweeps; and ITMAX, the 
largest IA value encountered during the last NSW sweeps. The meaning of 
the array(s) HAMU is explained by the comments. Central for the code are 
the lines 

W i =HAMI N/HAMAX 

HAMU(IA, 3)=HAblU(IA. 3)+WI*HA(IA) 

HAMU ( IA0 4 ) =HAMU ( IA. 4 ) +W 1 * HA ( lAP I ) * EXP ( -- 4. ODOO B ( lAP i ) ) 

822/82/I-2-22 
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Table V. Fortran Subroutine for Update of Multicanonical Parameters 

SUBROUTINE UPMUCA (IRPT) 
C HAMUA(*, l):over-all sum (record keeper only). 
C HAMUA(', 2): LRTRT adjusted over-all sum (record keeper only). 
C HAMUA(.. 3): i. weighted sum: HAMUA(*. 4): 2. weighted sum. 

IMPLICIT REAL*8 (A-H, O-Z) 
IMPLICIT LOGICAL (L) 
PARAMETER (ND=3, NL=08, NS=NL**ND, NRPT=I00. NSW=NS) 
PARAMETER (NNH=(ND*NS)/2. NAMIN=NNH/2. FRTRT=3.DO. EPS=I.D-8) 
PARAMETER (HMIN=I.ODOO,FLOAT(NS)oFLOAT(NSW)) 
COMMON~EAH~A(O:NNH). IAMIN. IAMAX. ITMIN. ITMAX 
COMMON~UCA/B(O:NNH). A(O:NNH). HAMU(O:NNH. 4). LRTRT(NRPT) 
DO IA=ITMIN. ITMAX 
HAMU(IA. I)=HAMU(IA. I)+HA(IA) 
HAMU(IA. 2)=HAMU(IA. 2)+HA(IA) 
END DO 

C Retreat strategy (below) implies: range up to IAMAX.GE.ITMAX 
IAMAMI=IAMAX--I 
DO IA=NAMIN. IAMAM1 
IAPI=IA+I 
HAMIN=MIN(HA(IA). HA(IAPI)) 
HAMAX=MAX(HA(IA). HA(IAPI)) 
IF(HAMIN.GT.0.5DO0) THEN 
WI=HAMIN HAMAX 
HAMU(IA. 3)=HAMU(IA. 3)+WI*HA(IA) 
HAMU(IA. 4)=HAMU(IA. 4)+WI*HA(IAPI)*EXP(--4.0DO@B(IAPI)) 

END IF 
C BETA update (after retreat HAMIN.LE,0,5 possible): 

HAMUMIN=MIN(HAMU(IA, 3). HAMU(IA, 4)) 
B(IAPI)=B(IA) 
IF(HAMUMIN,GT,EPS) B(IAPI) =-0.25DOOLOG(HAMU(IA, 4)/HAMU(IA. 3)) 
END DO 

C Retreat strategy for hung-up situations: 
LRTRT(IRPT)=.FALSE. 

C Besides retreat, update of MUCA A-array is performed 
C (range up to IAMAX,GE.ITMAX is needed for this reason), 

DO IA=NAMIN. IAMAMI 
IAPI=IA+I 
IF(HAMU(IAPI. 2).GT.HMIN. 
AND.HAMU(IAPI. 2).GT.FRTRT.HAMU(IA. 2)) THEN 

C The program may need mofications, if there are 
C energy values without states in the .LE.IMAX range 

IE(HAMU(IA. 2).EQ.O) PRINT,. 'UPMUCA Warning: IA =' . IA 
IF(,NOT,LRTRT(IRPT)) PRINT- 

6'RETREAT! IRPT. IA. HAMUs:'. IRPT. IA HAMU(IAPI. 2). HAMU(IA. 2) 
LRTRT(IRPT)=,TRUE. 

END IF 

IF(LRTRT(IRPT)) THEN 
HAMU(IAPI. 2)=HAMU(IAPI. 2)/FRTRT 
B(IAPI)=O.ODOO 
HAMU(IAPI. 3)=HAMU(IAP1. 3)/FRTRT 
HAMU(IAPI. 4)=HAMU(IAPI. 4)/FRTRT 

A(IAPI)=A(IA) -- 4.0DO~ (B(IAPI) -- B(IA))*FLOAT(IA) 
END DO 
DO IA=(IAMAX+I). NNH 
B(IA)=B(IA--I) 
A(IA)=A(IA - i) 
END DO 
RETURN 
END 

END IF 
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which implement Eqs. (19) and (20) recursively. Next, the arrays A and B 
correspond to the multicanonical functions fl and ~. The lines 

B(IAPI)=--0.25DOOLOG(HAMU(IA, 4)/HAMU(IA, 3)) 

and 

A(IAPI)=A(IA) --4.0DO~ (B(IAPI) --B(IA))*FLOAT(IA) 

implement Eqs. (21) and (11). Of course, A(NAMIN)=0. The parameter 
EPS prevents the fl-recursion from taking place without sufficient statistics, 
and otherwise Eq. (22) is chosen. 

Some complications arise, mainly because a "retreat" strategy has been 
implemented to get out of certain "hang-up" situations. An extreme dif- 
ference between HAMU(IA+I, 2) and HAMU (IA, 2) can turn out to be 
artificial, such that its statistics is better not trusted. "Extreme" is defined 
by the parameter FRTRT, put to 3 in the presented code. When the limit 
thus defined is exceeded, the assembled statistics is reduced in weight by 
the factor 1/FRTRT and fl(IA) is put in the corresponding energy region to 
fl(I,4) = 0 for the next recursion. However, one has to choose FRTRT to be 
very large (around 200) if one wishes to calculate multicanonical 
parameters for an 243 IF in the range described in Section 5.1. The reason 
is the peculiar IF density of states anomaly from IA=(3N/2)--7 to 
I A = (3N/2) -- 6 (see Table I). 
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